

RF-Annotate: Automatic RF-Supervised Image Annotation of Common Objects in Context

Emerson Sie and Deepak Vasisht

We need large diverse datasets for generalizable robots

[1] A. Gupta, A. Murali, D. Gandhi, and L. Pinto, Robot Learning in Homes: Improving Generalization and Reducing Dataset Bias, NeurIPS'18

We need large diverse datasets for generalizable robots

Time

Can existing annotation methods keep up with demand?

LabelFusion [2]

Human input remains a bottleneck

[2] P. Marion, P. R. Florence, L. Manuelli, and R. Tedrake, "LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes", ICRA 2018

What can we do about this?

How do tracker tags work?

Environment w/ Tagged Items

This Talk: Use them to annotate ~100s of video frames at once

a) at the *pixel* level and b) no clicks necessary

This Talk: Use them to annotate ~100s of video frames at once

Tagged Items

3-5¢ per RFID

Experimental Setup

Why RFID? Because they are battery-free and very cheap.

How to generate object instance masks?

Use category-agnostic instance segmentation on depth.

[3] Y. Xiang, C. Xie, A. Mousavian, and D. Fox, "Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation", CoRL 2020

How to assign tag label to each instance mask?

Use sensor motion and correlate spatial profiles.

Qualitative Results

Evaluated on >3000 frames of objects arranged in varying levels of clutter [4].

Separated

Increasing Object Closeness/Difficulty

[4] M. R. Loghmani, B. Caputo, and M. Vincze, "Recognizing Objects In-the-wild: Where Do We Stand?", ICRA'18

Quantitative Results

Compared output of pipeline with human-annotated videos as ground truth.

Metric	Separated	Touching	Stacked	
Instance Recall	0.96	0.86	0.91	
Matching Accuracy	1	0.8	0.88	

Key Takeaways

- Perfect matching accuracy when objects are physically separated.
- Limiting factor is mask generation [3], not RF component.

Under-segmentation

[3] Y. Xiang, C. Xie, A. Mousavian, and D. Fox, "Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation", CoRL 2020

Condition	Mask Overlap (F)	Recall@0.75
Separated	1.88	1.86
Touching	→ 0.78	V 0.62
Stacked	→ 0.75	→ 0.77